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Abstract

Tempeh is an Indonesian traditional food made from fermented soybeans, which offers wide culinary use in East Asian countries. Similar
to all fermented foods, its preparation offers the purpose of food preservation. However, preclinical studies have highlighted that microbial
action leads to a modification in the nutritional composition of the food’s matrix. Although there is a wide availability of data on the
beneficial effect of soy, tempeh remains relatively unexplored, perhaps due to its limited diffusion in the world, which limits its research
availability. However, available data suggest that tempeh may confer beneficial health effects due to the high bioavailability of nutrients
and phytochemicals, showing ameliorative action on oxidative stress, glycaemic control, and blood lipid levels. Furthermore, the high
biological value of tempeh means it can be used to optimize protein and caloric intake in athletes, vegetarians, and children. Moreover,
the microbial fermentation used in the production of tempeh, in addition to improving the bioavailability of minerals, proteins, fibre,
vitamins, and isoflavones, produces biopeptides whose biological effect is currently of great interest. Tempeh can be employed in
traditional preparations as well as second-generation foods, such as plant-based meat substitutes, to provide functional and nutritional
properties and a higher eco-friendly option compared to animal foods. This review aims to provide an overview of tempeh’s properties,
regarding human data and future research perspectives.
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1. Introduction
Ever since man has stabilized sedentary habits, the

need for food conservation has become a fundamental role
in daily food availability. Food fermentation consists of
processing staples using microorganisms, with the main
purpose of protecting against the growth of pathogenic
microbes that cause food to spoil and pose health risks
[1]. However, fermentation also allows the food matrix
to be modified, providing different aromas from the start-
ing food, by altering the bioavailability of nutrients and
phytochemicals, improving nutritional quality, and confer-
ring added functional properties [2–4]. Furthermore, the
microorganisms being used for transformations can pro-
duce new molecules, such as vitamins, and by-products
derived from microbial metabolism, including biopeptides
with nutraceutical activities derived from matrix polypep-
tides, which have recently gained more interest for health
purposes [5,6].

There are different types of fermentation, which can
be characterized by the presence of a selected starter, along-
side the working conditions, and type of microorganisms
being used. The most commonly employed microorgan-
isms are yeasts, moulds, lactobacilli, and streptococci,
which limit pathogen growth through acidification of the
medium and microbial exclusion. Additionally, foods can
be transformed by a heterogeneous pool of environmental
microorganisms.

The use of fermenting plant foods is widespread
throughout theworld, with its roots in the culinary traditions
of various countries, such as sourdough, sauerkraut, miso,
tempeh, natto, kombucha, tamari, sufu, tofuyo, shoyu, kim-
chi, tape, doenjang, meju, douchi, cheonggukjang, kan-
jang, thua-nao, kinema, hawaijar, tungrymbai, oncom, etc.
[1,7,8]. Many fermented foods from Southeast Asian coun-
tries extensively employ soy as a starting staple [9–12].

Tempeh or tempe, as per its original name [13,14], is
a traditional Indonesian soybean food, which is obtained
following various processes of dehulling, soaking, boiling,
and fermentation [15–17]. During the last century, tempeh
has spread to India, Japan, and the United States, more re-
cently to Zambia in the early 1970s [15].

Multiple fermentation steps can be used during pro-
duction, while treatments performed at different tempera-
tures can follow one another along the production process.
The use of various microorganisms may also vary based
on the traditional use of environmental sources or through
inoculations of specific isolated microorganisms. Even if
there is a single decisive fermentation, other fermentation
steps can occur to improve the product. Indeed, Fig. 1 dis-
plays the main steps in the soy-based tempeh production
process.

In Indonesia, tempeh is considered a cheap and afford-
able staple-based food, which is rich in proteins and can
be consumed through a wide variety of cooking methods,
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Fig. 1. Production process of tempeh. The step order can change
based on specific needs.

including boiled, fried, grilled, or steamed [15]. Different
types of rice, wheat, or brans are normally used as tradi-
tional inoculums. Heterogeneous pools of microorganisms
can be found in traditional tempeh, with dominant strains
such as S. dysgalactiae, S. faecium, S. epidermidis, and L.
casei identified in the soaking step. Likewise, B. brevis, C.
diversus, E. agglomerans, E. cloacae, K. pneumoniae, K.
ozaenae, P. burtonii, R. rubra, and C. diddensiae have also
been detected [18]. The use of Lactiplantibacillus plantar-
ium (formerly known as Lactobacillus plantarium and L.
arabinosus) during the soaking step seems to favour the
acidification medium, which inhibits the growth of vari-
ous pathogenic microbes [19–22]. In the industrial produc-
tion of tempeh, the fermentation step is conducted by pack-
ing soaked and inoculated soybeans into perforated plas-
tic bags. However, naturally available materials are used
during the traditional fermentation process. Fig. 2 shows a
finished traditional tempeh product, whereby Hibiscus tili-
aceus leaves are usually used for packing inoculated soy-
beans before the fermentation step.

A single species of filamentous fungus is used in the
fermentation step, with the common employment of Rhizo-
pus species, such as R. oligosporus, R. oryzae, R. stolonifer,
R. arrhizus, and R. formosaensis, alongside other microor-
ganisms belonging to Fusarium spp [23,24]. Among these
moulds, Rhizopus microsporus var. oligosporus is the most
used globally for producing tempeh [25]. However, other
microorganisms such as bacteria, moulds, and yeasts may
be present in traditional co-inoculums, such as Absidia spp.,
Mucor spp., Rhizomucor spp., etc. [26]. In non-traditional
co-inoculations, probiotics such as L. plantarium have been
added to the main fermentation step, which can greatly in-
hibit the growth of pathogens during this phase [22]. The
co-inoculation of B. subtilis, a bacterium used in the pro-
duction of Natto, can also confer additional functional prop-
erties to tempeh [27], while the use of A. elegans can re-
duce the presence of non-digestible oligosaccharides that
produce flatulence [28].

Solid-state fermentation changes the consistency of
the starting matrix, producing a cake-formed product with

a white covering texture by the mycelium, which com-
pacts the tempeh structure and causes a mushroom-like
flavour [29,30]. Although soy-based tempeh is the most
widespread, the same transformation process can be applied
to various legumes and grains [31].

As with many other fermented foods, the production
process reduces the concentration of antinutrients in the
food matrix (such as protease inhibitors, tannins, and phytic
acid), thereby causing an increase in the nutritional value of
the product compared to the starting food [3].

Although the properties of tempeh have been de-
scribed in preclinical studies, human studies are still very
fragmentary if we consider the large availability of studies
on soy [32–39].

This review aims to describe the possible benefits of
soy-based tempeh for humans, collecting available data
from previously published literature. This document pro-
vided a comprehensive update of the current knowledge
on biotechnology and biochemical characteristics of soy-
based tempeh, with particular attention on human outcomes
and benefits related to its use. Although previous reviews
on the topic are available, the information proposed is fre-
quently based on animal and in vitro studies, with marginal
parts regarding the benefits on humans. A relevant part
of this document was dedicated to nutritional values, nu-
traceutical properties, and current health concepts, such as
postbiotic and paraprobiotic actions of secondary metabo-
lites from fermented food. Moreover, well-known bioac-
tive molecules with health benefits for metabolic diseases
are also discussed.

2. Nutritional Aspects
Tempeh is a food low in carbohydrates and rich in pro-

teins, vitamins, and bioactive compounds [30]. Fermenta-
tion allows the release of free fatty acids from lipid fractions
[40] and transforms soy glycosidic isoflavones into uncon-
jugated aglycone [41–43]. According to the CodexAlimen-
tarius Commission, the protein component must represent
at least 15% w/w with a lipid content of 7% and dietary
fibres representing at least 2.5% [29]. According to the
United States Department of Agriculture Standard Refer-
ence (USDA SR) Legacy Foods database, tempeh provides
192 kcal per 100 g, 20.3% protein, 10.8% fat, and 7.64%
carbohydrates [44]. Furthermore, 100 g of tempeh consists
of 111 mg of calcium, 2.7 mg of iron, and 24 mcg of folate.
Fermentation leads to an increase in iron bioavailability ow-
ing to the conversion of iron (III) into iron (II) [45,46]. Fur-
thermore, there are 4.3 g of polyunsaturated fatty acids per
100 g, the majority of which is represented by linoleic acid.
This polyunsaturated fatty acid is an essential molecule in
the omega-6 series that is particularly represented in soy and
its derivatives [47]. In the USDA-branded foods database, a
very similar composition can be found, with frequent use of
white, brown, or wild rice among ingredients. Nutritional
composition among different batches and preparations of
tempeh can vary according to the microbial species being
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Fig. 2. Traditional tempeh. Hibiscus leaves are used to package inoculated soybeans.

Table 1. Nutritional composition of tempeh (data per 100 g).
Product Energy (kcal) Protein (g) Fat (g) Carbohydrate (g) Fibre (g) Calcium (mg) Iron (mg) Ingredients

USDA SR Legacy
Database

192 20.3 10.8 7.64 NA 111 2.7

Lightlife (a) 190 21.4 5.36 14.3 7.1 104 2.38 Cultured organic soybeans
(soybeans, lactic acid from plant
source), water, and organic

brown rice

Nature’s Promise 224 23.5 9.41 12.9 4.7 94 1.65 Cultured organic soybean and
water

Lightlife (b) 202 16.7 5.95 21.4 8.3 71 2.14 Cultured organic soybeans
(soybeans, lactic acid from plant
sources), water, organic wild
rice, and organic brown rice

Franklin Farms 227 22.7 9.33 13.3 5.3 93 1.73 Cultured organic soybean and
water

Westsoy 211 21 9.21 11.8 3.9 105 2.37 Cultured organic soybean, water,
and organic white rice

used and the fermentation process conditions, such as time
and temperature. Table 1 shows the nutritional composi-
tion of tempeh according to the USDA SR Legacy Foods
and Branded Foods database.

2.1 Protein

A protein-energy deficiency persists in low-income
countries, caused by low accessibility to food in many parts
of the world. Furthermore, plant foods may have limited
protein value due to their low amino acid score and di-
gestibility. Soy is a well-known food source that is rich
in essential amino acids. However, the digestibility of soy-
beans is limited by the presence of antinutrient substances
commonly found in legumes, such as phytic acid, tannins,
and protease inhibitors. There is a lowering of phytic acid
concentrations during microbial fermentation and soaking,
[46], which improves the bioavailability of proteins owing
to an increase in digestibility caused by a reduction of antin-
utrients. Although the overall amount of protein is very

similar to unfermented soybeans, tempeh offers better pro-
tein quality. Fermentation increases the protein digestibil-
ity corrected amino acid score (PDCAAS) compared to the
starting pulse [48]. The PDCAAS is a parameter that is
widely used in the evaluation of protein quality since it con-
siders both the chemical composition of amino acids and
the physiological absorption of proteins. Furthermore, mi-
crobial degradation of proteins by microorganisms releases
free amino acids into the matrix, which has possible func-
tional implications [49].

Tempeh is considered a rich source of branched-
chain amino acids (leucine, isoleucine, and valine) due
to the increase in their bioavailability after fermentation
[50]. Moreover, the fermentation process can slightly in-
crease essential amino acid bioavailability compared with
the starting staple [51]. The high protein quality of tem-
peh can be useful for ensuring affordable vegetable protein
sources with high nutritional values. Furthermore, these
characteristics are often attractive to those who follow ei-
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ther a vegetarian or vegan diet and are looking for alter-
native nutritional sources. Considering that a plant-based
diet can be adopted for ethical, health, and environmental
reasons [52,53], tempeh can be highly accepted among veg-
etarians and vegans.

2.2 Vitamins
Vitamin B12 is an essential molecule for humans. It

takes part in mammalian metabolic pathways as an enzy-
matic co-factor in metabolising odd-chain fatty acids and
for homocysteine detoxification [54,55]. It is considered a
vitamin of animal origin since the concentrations in plant
foods are negligible. However, its biosynthesis is carried
out by microorganisms, meaning fermented foods can con-
tain vitamin B12 if competent microbes are present [56,57].
Based on the microbial consortium composition of tempeh
fermentation, significant quantities of vitamin B12 derived
from symbionts can be found [58,59]. The production of
vitamin B12 in tempeh usually depends on the presence of
K. pneumoniae and C. freundii in the microbial consortium
[58,60,61]. It seems that the main mould used for fermen-
tation does not contribute to vitamin B12 production. Gen-
erally, the presence of this vitamin is dependent on con-
taminating and causal events and it can cause up to 12.4
mcg of vitamin B12 per 100 g of traditional tempeh [58].
In countries of traditional production, where natural water
sources are used, environmental bacteria can synthetize vi-
tamin B12 [58]. However, a cross-feeding network appears
to exist between vitamin B12-producing species and Rhi-
zopus [61]. Moreover, Propionibacterium species can be
useful in increasing vitamin B12 concentrations in tempeh
batches and they could be industrially adopted for this pur-
pose [62,63].

Since the availability of vitamin B12 in plant-based
foods is negligible among vegetarians, the possibility of fre-
quently using tempeh in steady amounts could help to guar-
antee dietary vitamin B12 requirements [57]. However,
considering that concentrations are still not standardized by
the various producers, and tempeh is a food option not of-
ten consumed daily in countries different from the places of
traditional production, it remains premature to confer this
nutritional role to tempeh.

Although vitamin B12 is of great interest due to its
limited availability in nature, the fermentative action of mi-
croorganisms can promote the bioavailability of other vi-
tamins. Co-inoculation of tempeh with Aspergillus oryzae
compared to R. oligosporus alone shows a considerable in-
crease in vitamin B1 and vitamin B2 levels, although it has
been detected in grass pea and not soybean [64]. The in-
crease in vitamin B3 both in the form of nicotinamide and
nicotinic acid has been observed in batches of tempeh fer-
mented with C. freundii and Lactobacillus spp., while vita-
min B1 can be produced by C. freudnii [65]. The ferment-
ing microbes increased vitamin B8 content by more than
2 times compared to the basic matrix [66]. Folates also
seem to increase from fermentation, while the content in

tempeh can increase five-fold compared to the starting food
[66–68]. Tempeh has also been identified as a source of er-
gosterol, a provitamin isoform of calciferol called vitamin
D2, which is biosynthesized by fungi, including microbial
[69,70].

2.3 Antinutrients
As already mentioned, the reduction of antinutrients

through the fermentative transformation process is a crucial
step in increasing the soy nutrients bioavailability found in
tempeh, in particular, the polyphenols, minerals, and pro-
teins [3]. Although the cooking and soaking steps con-
tribute toward the reduction in phytic acid, fermentation ap-
pears to be the most effective step for this activity [3,30].
This is possible thanks to the action of thermostable phy-
tases of R.oligosporus, which work at an optimum temper-
ature of 44 °C and pH of 3–5 [71,72]. R. oligosporus phy-
tases reduce the phytic acid content by approximately 65%
[73]. Some lactic acid bacteria can also show phytase ac-
tivity [72,74]. Similarly, oxalate levels in tempeh appear
to be lower than in other plant foods, including textured
soy protein, which shows levels that are almost 28 times
higher [75]. The levels of trypsin inhibitors are also reduced
in tempeh following fermentation, which also leads to im-
proved protein digestibility [45].

Stachyose, raffinose, and alpha-
galactooligosaccharides are all reduced by the fermentative
action of the microbes found in tempeh, thereby reducing
flatulence resulting from indigestible oligosaccharides
[73,76–78]. Moreover, regarding allergenicity, the effect
of fermentation allows allergens hydrolysis to occur, which
also happens in other fermented foods [79,80]. This aspect
can be further enhanced by selected co-inoculations that
favour the protein hydrolysis from the matrix [28]. A
further improvement in protein quality occurs through the
reduction in phytates and indigestible oligosaccharides
as well as an increase in antioxidant power, which was
obtained by germinating the soybeans used for tempeh
production [81–83].

Tempeh, unlike soybeans and other legumes, is among
the foods listed by Monash University resources as low in
fermentable oligosaccharides, disaccharides, monosaccha-
rides, and polyols (FODMAPs) [84,85].

2.4 Minerals
Fermentation increases soluble iron from 24% to 67%

owing to the release from the vegetal ferritin soy deposits,
probably due to the phytase activity [13]. The increase in
iron bioavailability also depends on the conversion of iron
(III) into iron (II) [46,86].

It has been suggested that soy products may provide
a potentially beneficial effect on bone health due to their
isoflavone content [87–89]. Furthermore, microbial fer-
mentation in tempeh also improves calcium bioavailabil-
ity, which may contribute to improved bone density [13].
Haron and colleagues [90] evaluated calcium absorption
from tempeh in 20 post-menopausal Malaysian women and
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compared it to cow milk in a cross-over clinical trial. Fol-
lowing the intake of approximately 200 g of tempeh, com-
pared to 114 grams of milk (containing the same amount
of calcium), no significant differences were noted in food-
dependent absorption, thereby indicating that tempeh may
represent a bioavailable plant-based source of calcium, with
fractional absorption of calcium similar to milk. Further-
more, urinary calcium excretion was not significantly dif-
ferent, although calcium balance was higher for tempeh
compared to milk.

3. Functional Aspects
The antioxidant effect of tempeh has been veri-

fied in vitro and is mostly associated with the presence
of isoflavones, such as genistein and in particular agly-
conic forms, in addition to the potential effect of trans-
cinnamic acid [91,92]. However, soy contains non-
isoflavone polyphenols, including lignans—also classified
as phytoestrogens—which can contribute to the antioxidant
effect of tempeh [93].

The use of L. plantarium as a co-inoculum in tempeh
production favours the reduction of biogenic amines, such
as putrescine and tyramine, which can be formed due to
the growth of unwanted microorganisms [94]. The strains
used in this production can be decisive in obtaining various
functional properties related to tempeh since the microor-
ganisms specific proteolytic activity can release the biopep-
tides responsible for some antioxidant, anticancer, antidia-
betic, and antihypertensive properties by tempeh [95]. The
action of isoflavones could also influence cholesterol lev-
els [96,97]. It also appears that free fatty acids from tem-
peh exert a cholesterol-lowering effect by inhibiting hepatic
3-hydroxy-3-methyl-glutaryl-coenzymeA (HMG-CoA) re-
ductase [98]. Furthermore, the hypocholesterolemic effect
could depend on the cholesterol intestinal sequestration ef-
fect of enterohepatic circulation by dietary fibre, while re-
ducing the glycaemic response by inhibiting the absorp-
tion of macromolecules [99–101]. Tempeh has shown anti-
aging effects in pre- and post-menopausal women, as as-
sessed by skin quality, bone density, and uterine tissue
health [102,103]. These mechanisms appear to be related to
the interaction between isoflavones and the female hormone
network [104]. Furthermore, the oestrogen-like activity of
isoflavones has been proposed to provide anticancer effects
[105,106].

3.1 Isoflavones
Soy isoflavones are widely studied for their potential

beneficial effects. They are polyphenolic phytochemicals
that provide strong antioxidant effects [32]. However, they
are much better known for their interaction with oestro-
gen receptors that produce differential activity between the
ER-alpha and ER-beta; therefore, promoting their tissue-
specific and oestrogen receptor-modulating effects [107–
109]. Isoflavones can interact with oestrogen receptors
thanks to their molecular structure, which resembles en-

dogenous oestradiol and which, together with lignans and
coumestans, is classified as a phytoestrogen due to these
characteristics [33,110]. Even if some previous preclinical
studies have presented a possible negative endocrine effect
of phytoestrogens, presently, we know that isoflavones can
exert a beneficial effect on the human hormonal network,
stimulating oestrogen receptors when circulating endoge-
nous oestrogens are insufficient, and concurrently, compet-
ing with circulating oestrogens when their concentrations
are high, thereby mitigating their overall effects [34]. For
this reason, isoflavones, including soy-derived phytoestro-
gens, are used to mitigate menopause nuisances.

Although phytoestrogens are present in many foods,
such as seeds, legumes, and other vegetables, the main nu-
tritional sources of isoflavones are soy and soy-based foods.
Isoflavones such as genistein, daidzein, and glycitein are
found in soybeans in glycosylated forms as malonyl and
acetyl compounds conjugated to sugars. However, these
isoforms appear to be poorly bioavailable due to limited dif-
fusion through the intestinal mucosa [111]. Many soy foods
contain mostly isoflavones in a glycoside form. Some soy
processing methods allow isoflavones to be metabolised,
transforming them into aglycone, which diffuses more eas-
ily through lipid membranes thanks to their lower hy-
drophilicity and molecular weight, compared to their re-
spective glycosides [112–115]. Fermentation during tem-
peh production is widely documented as being able to
perform this transformation and, therefore, confer greater
benefits from isoflavones resulting from the increase in
their bioavailability after deconjugation [41]. The per-
centage of aglycone in fermented foods varies from 40%
to 100% as a result of the microbial beta-glucosidase ac-
tion. Furthermore, the isoflavone content in traditional
foods, such as tofu and soy milk is on average higher than
in second-generation soy products [112]. However, tem-
peh appears to be the soy-derived food with the highest
levels of isoflavones [116]. Various production steps can
favour the deconjugation of isoflavone, while the fermen-
tation time can also affect the final isoflavone levels [117–
120]. Even frying the tempeh (one of the most traditional
cookingmethods) appears to further improve the concentra-
tion of aglycone isoflavones compared to raw tempeh, al-
though it simultaneously reduces the total isoflavones con-
tent [121,122]. Pre-germination of soybeans appears to fur-
ther increase the isoflavones bioavailability by releasing the
germinated isoflavone content [123].

Isoflavone Absorption
Equol represents the most active form of daidzein be-

cause its structure is very similar to endogenous 17-beta-
estradiol and its presence in circulating fluids is closely
linked to the individual ability of metabolising isoflavones
[106]. In addition to the greater estrogenic effect, it also
shows a greater antioxidant effect compared to daidzein
[124–127]. Although clinical trial data are conflicting as to
which soy foods (tempeh, soymilk, or texturized soy pro-
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tein) are more effective in raising genistein or daidzein lev-
els in the urine following intake [128,129], major equol
concentrations have been found following the consump-
tion of tempeh [128]. However, data are still insuffi-
cient to definitively clarify these aspects. Equol and O-
desmethylangolensin (O-DMA) represent the products of
daidzein intestinal metabolism after its transformation into
the aglyconic form [130]. Nevertheless, since this step is
performed by the intestinal microflora, there may be indi-
vidual variability in the ability to produce equol [131–133].
Some individuals are defined as equol-competent, equol-
producer, or equol-excreter if they excrete higher con-
centrations of equol following daidzein intake [130,134–
137]. It is estimated that in the general population, only
30% of individuals are equol-producers [138–141]. This
also implies that individuals who are unable to metabo-
lize isoflavones due to a lack of adequate intestinal micro-
bial populations may not fully benefit from the activities
of isoflavone [134,142]. In mammals, isoflavones follow
the enterohepatic circulation, meaning they are excreted in
a conjugated form to glucuronic acids by bile [143]. Subse-
quently, the isoflavones can be deconjugated again by bac-
terial beta-glucuronidases and sulfatases. Therefore, the gut
metabolism of isoflavones is a complex biochemical pro-
cess, whereby both the host and microbial enzymes partic-
ipate [144–146].

In 20 post-menopausal Malayan women, tempeh con-
sumption resulted in greater urinary excretion of equol,
daidzein, and genistein compared to milk consumption
[147]. In one of the first works on the bioavailability of phy-
toestrogens from fermented soy foods, Hutchins and col-
leagues highlighted how fermentation during tempeh pro-
duction reduces the content of total isoflavones, especially
those in the glycosidic form (daidzin and genistin), yet it
increases the recovery of isoflavones in urine following in-
gestion due to its increased bioavailability [148]. However,
in a study by Xu and colleagues [149], on 10 healthy fer-
tile women, the consumption of various types of soy foods
(tempeh, tofu, textured soy, or soybeans) caused no signifi-
cant differences in short-term urinary isoflavone excretion.
However, the limited statistical power of these clinical tri-
als makes it difficult to conclude an overall outcome, also
considering the influence of interindividual variability on
isoflavone metabolism. Subsequently, a clinical trial was
performed with 27 men and women (both pre and post-
menopausal), which tested the urinary kinetics of acute
isoflavone intake using soy milk, tempeh, and textured soy
proteins [128]. Recovery of urinary genistein was greater
in tempeh for premenopausal women than by soy milk, al-
though this was not observed in men and postmenopausal
women. While there were no appreciable differences in
daidzein excretion related to the food matrix, consumption
of tempeh showed greater excretion of equol compared to
other soy foods. Similarly, Cassidy and colleagues [129]
enrolled 59 individuals to investigate the pharmacokinetics
of isoflavones from various soy foods: tempeh, soy milk,

and texturized soy. Following the ingestion of tempeh,
there was a greater increase in serum daidzein and genistein
compared to the other soy foods. However, the blood con-
centration of isoflavones peaked faster following the con-
sumption of soy milk, thereby highlighting the favourable
influence of a liquid matrix compared to the solid state. Al-
though the highest concentration of total isoflavones was
found in texturized soy proteins, tempeh produced the high-
est concentrations of genistein and daidzein in aglyconic
form.

3.2 Effects on Cognition
With the increase in the average lifespan of the pop-

ulation, the occurrence of cognitive disorders has also in-
creased, which results in greater healthcare costs. Cur-
rently, the clinical approach to cognitive decline is pallia-
tive, with the aim of slowing down the disorder. Lifestyle
approaches such as physical activity and nutrition remain
the most promising preventive interventions. However,
meta-analyses have highlighted a positive effect of oestro-
gen administration on cognitive test outcomes for up to 2–3
months [150,151]. Furthermore, the effects on cognitive
functions from modifying the microbiota appear to involve
various mechanisms [152–154].

In an observational study on 142 elderly individuals
from rural Indonesia (56–97 years old), it emerged that tem-
peh consumption was correlated with better immediate re-
call scores [155]. More recently, Handajani and colleagues
[156] conducted an intervention study on 84 participants
aged over 60 years with mild cognitive impairment (MCI),
who had been randomized to consume two different tempeh
preparations compared to a control group. After 6 months
of consuming 100 g of tempeh per day, there was an in-
crease in global cognitive scores in participants who had
assumed tempeh, although an improvement in language do-
main scores was only associated with one of the two prepa-
rations. Interestingly, the effective preparation for the lan-
guage domain was the preparation with the lowest concen-
tration of microorganisms, indicating that the qualitative as-
pect rather than the quantitative onemay bemore important.
A probiotic strain of L. reuteri fermentum isolated from
tempeh was used for a 12-week clinical trial on 93 Indone-
sian individuals over 60 years old with memory impairment
[157]. From the 16S rRNA analysis, the selected strain
contained the gene encoding for gamma-aminobutyric acid
(GABA). The intervention improved the values in the cog-
nitive domains of memory, learning processes, and verbal
and visuospatial fluency.

This suggests that tempeh consumption may be useful
for a safe intervention in cognitive preservation, although
only during a still receptive age window.

3.3 Physical Performance and Nutritional Adequacy
A drink with added tempeh extract was used in a

double-blind controlled clinical trial on 18 semi-trained
men aged 18–24 years to evaluate parameters associated
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with muscle tissue damage and recovery [158]. The tem-
peh drink significantly reduced creatine kinase levels and
increased maximal muscle strength at 24 hours compared
to the placebo. These effects showed no significant differ-
ences compared to the whey protein control group. Creatine
kinase levels were linked to muscle damage and indirectly
to muscle fatigue, while also reducing muscle strength and
recovery [159]. Therefore, tempeh with its antioxidant
properties could mitigate the effects of reactive oxygen
species (ROS) produced by excessive training, which can
damage muscle cell membranes [160,161].

In addition to these sport-related benefits, the nutri-
tional characteristics of tempeh could be applied to improve
calorie-energy adequacy, especially in children. In a recent
study, tempeh was provided as nuggets to 46 Indonesian
children aged 24–59 months [162]. After 30 days, tem-
peh consumption had improved energy intake compared
to the control. Similarly, 30 g/day of tempeh nuggets
were offered to 30 children aged 36–60 months in a quasi-
experimental study and showed a significant weight in-
crease after 4 weeks [163]. In contrast, the control showed
a non-significant weight gain compared to baseline.

Tempeh, given the effect of fermentation, can be a
highly digestible food for children [1,164]. Moreover, it
does not result in an excessive intake of fibre, which in
the case of a vegetarian or vegan diet could represent a
limit in the absorption of nutrients by children [165]. The
use of tempeh as an adequate nutritional source in chil-
dren is a promising frontier, which would allow suitable
economic solutions for low-income countries to address
calorie-energy insufficiency. At the same time, as a mini-
mally processed source of legumes, it would help the objec-
tive of the FAO to increase the consumption of legumes, as
an eco-friendly food security strategy, while also limiting
food excesses in high-income countries [166,167]. Given
the high environmental impact of the animal food produc-
tion chain (water use, carbon footprint, and greenhouse gas
emission), the use of plant-based foods with high nutritional
value can encourage a transition toward a more plant-based
diet, guaranteeing greater access to food and reducing the
ecological cost of production.

In a prospective, open-label intervention study on 35
Indonesian patients with type 2 diabetes, daily consumption
of 2 grams of tempeh for 3 months improved HbA1C and
triglyceride levels [168]. However, since this trial used a
freeze-dried sample of tempeh grounded into a powder, it is
not possible to transfer the results to cases where fresh tem-
peh was consumed, which is normally cooked prior to con-
sumption. In a randomized, double-blind controlled, cross-
over trial, 13 Indonesian women aged 18–20 with a BMI
of 25–30 used tempeh or unfermented soy for an acute test
[169]. A 30% reduction was observed in serum acyl-ghrelin
30 minutes after ingesting tempeh, yet not following unfer-
mented soy consumption. Furthermore, the fermented food
showed a greater insulin response and an increase in serum
arginine at 120min compared to the control. Ghrelin is con-

sidered the hunger hormone, and it is produced by gastric
cells during fasting, while it is reduced following the in-
gestion of a meal [170,171]. Similarly, insulin is released
after a meal by pancreatic cells to stimulate satiety [172].
Furthermore, arginine is an amino acid that is released dur-
ing protein digestion, which could act as a signal of meal
protein sufficiency [173]. This suggests that tempeh could
improve the ability to regulate appetite, which may be ben-
eficial in individuals with metabolic syndrome.

3.4 Probiotic, Prebiotic, and Paraprobiotic Effect
Tempeh may have antimicrobial properties that can

positively influence the balance of intestinal microbiota
following ingestion. A liquid suspension of tempeh was
able to inhibit the growth of B. subtilis and B. stearother-
mophilus in vitro [174,175]. R. oligosporus can inhibit the
growth of Bacillus spp, Staphylococcus spp and Streptococ-
cus spp. through heat-resistant proteins with antimicrobial
activity being released into the growth medium [176].

This aspect is particularly relevant since tempeh is
consumed after cooking, meaning a probiotic effect seems
unlikely. However, the substances released following fer-
mentation, if resistant to cooking, can exert a paraprobiotic
effect, which modulates the intestinal microbiota ecology
[35].

An in vitro study that simulated human gastrointesti-
nal digestion highlighted how tempeh can stimulate the
levels of Bifidobacterium spp. and Lactobacillus spp.
[175]. Akkermasia muciniphila together with Bifidobac-
terium spp. is more represented in the gut of lean individ-
uals rather than in subjects with metabolic syndrome [177–
179]. A. muciniphila colonizes the cecum and degrades the
glycoproteins that make up the mucin, thereby stimulating
the immune system and cell proliferation in the host mu-
cosa [180]. In an open-label study on 16 participants, con-
suming 100 g of steamed tempeh for 16 days increased A.
muciniphila numbers and immunoglobulin A (IgA) levels
in the stool compared to the baseline [181]. IgA acts as
a first defence against pathogens and toxins in the intesti-
nal tract and promotes anti-inflammatory mechanisms that
shape the intestinal barrier through the microbial balance of
the microbiota [182].

Subsequently, Stephanie and colleagues confirmed an
increase in A. muciniphila in the faeces after 28 days, also
showing an increase in Bifidobacterium spp. compared to
the baseline [183].

The effectiveness of tempeh in this clinical trial con-
firms the paraprobiotic effect since cooking before con-
sumption inevitably destroyed the present microorganisms,
which cannot act through a probiotic mechanism. However,
the molecular motifs remaining from the microorganisms
present in fermented food can be recognized by the host’s
immune system and they activate a response following the
antigenic interaction [184]. Furthermore, the presence of
fermentable fibres in tempeh could favour the microbial
production of short-chain fatty acids (SCFAs: acetate, bu-
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tyrate, propionate), which show a beneficial effect in the
gut by exerting a prebiotic effect [185]. Moreover, SC-
FAs can exert anti-inflammatory and hypocholesterolemic
actions on the host by inhibiting the hepatic synthesis of
HMG-CoA reductase [99,101,186]. The production of SC-
FAs has also been linked to gut–brain axis (GBA) functions
[187,188].

Depending on the fermentation conditions, GABA
was found in tempeh [189]. GABA is a neurotransmitter
implicated in cognitive functions, of particular interest in
GBA communication mechanisms [190–192].

3.5 Antioxidants
The antioxidant effect of tempeh components seems

to be related to fermentation times with greater ROS scav-
enging activity following prolonged fermentation [193–
195]. In vitro studies have shown that tempeh has a greater
antioxidant effect than unfermented soy, showing greater
scavenging abilities on free radicals and superoxide an-
ions [194]. In a recent in vitro study, microglial cells
showed reduced ROS levels following tempeh adminis-
tration after lipopolysaccharide (LPS)-induced oxidative
stress [196]. This may depend on the content of polyphe-
nols and their bioavailability [41,193,197]. The presence
of greater isoflavone concentrations in the aglycone form
seems to explain the properties of tempeh compared to
other non-fermented soy foods and it identifies genistein
and daidzein in the aglycone isoforms as having greater an-
tioxidant effects compared to their glycosides, as well as a
greater bioavailability [198–200]. Furthermore, microbial
proteolytic activity allows proteins to be hydrolysed and re-
lease amino acids and biopeptides, which aremore bioavail-
able and exert antioxidant activities [201,202].

The increase in antioxidant activity by tempeh may
also depend on the increase in phytochemicals as is the
case for beta-tocopherol, which shows a 200% increase in
activity compared to unfermented soybean [203]. While
beta-, gamma-, and delta-tocopherol concentrations seem
to increase during tempeh production, the concentration of
alpha-tocopherol is not affected by the fermentation pro-
cess.

Another powerful antioxidant identified in tempeh is
3-hydroxyanthanilic acid [204]. This showed an improve-
ment in stabilizing soy products through the scavenging ef-
fect of NO [204,205]. The antioxidant power can be further
increased by including an anaerobic fermentation step in
tempeh production [206]. The action of oxidative stress ap-
pears to be related to numerous chronic pathologies, such as
diabetes, inflammatory diseases, tumours, and cardiovascu-
lar [16,207–209].

The bioactive molecules contained in tempeh, in par-
ticular biopeptides, can exert a beneficial effect on cancer
prevention through a protective antioxidant effect on nu-
cleic acids. The same beneficial effect can be advantageous
in cancer therapy. However, to obtain the maximum ben-
efit from consuming tempeh it may be useful to preserve

the microbial component by limiting transformations such
as deep cooking and its transformation into flour [210].

4. Food Technologies
The consistency of tempeh and its nutritional proper-

ties make it ideal for use in second-generation foods, such
as meat substitutes, which are highly requested in West-
ern countries [162,211,212]. Furthermore, tempeh-based
preparations can retain functional properties compared to
meat-based foods [213]. Tempeh can also be used as a
meat extender to improve the nutritional properties of meat-
based preparations and at the same time limit production
costs [214,215]. Similarly, the use of tempeh in mixtures
for pasta production allows for an increase in the content
of folates and proteins, while also improving the taste and
texture [216,217].

Acceptability and increase in polyunsaturated fatty
acid content were found when 5% dehydrated tempeh was
used in bread doughs and cereal-based bars [218]. The an-
tioxidant capacity is preserved even when employed for the
production of biscuits as a replacement for soy flour com-
ponents [219]. This use does not alter the product accept-
ability. Tempeh has also been used as a fortifier to obtain
an emergency food formula [220].

The use of tempeh in doughs has been successfully
used for the production of vegan biscuits to increase accept-
ability [221]. Furthermore, good acceptability of beef pat-
ties containing 10% tempeh was observed compared to the
100% beef control, with better sensory properties regarding
the perception of tenderness and juiciness [215]. This out-
come coincides with the participants’ desire to choose more
balanced and antioxidant-rich foods. However, it should
be noted that food acceptability is also important if it is
to be used routinely. While acceptability in populations
that traditionally use tempeh may be high, in other coun-
tries where it is a little-known food, the aspect of sensorial
perception should not be underestimated. Neophobia can
be a decisive element in the acceptability of culturally new
foods, such as tempeh, in some countries [222]. The accep-
tance of tempeh-like products in the Danish market could
depend on the consumers’ predisposition to new foods, with
a greater propensity by those who were already oriented
towards plant-based alternatives, avoiding mimicking the
meat-based foods characteristics [223]. Consequently, al-
though it may be more difficult to include tempeh in the
diet of populations with very different culinary traditions,
the search for sustainable food options could lead to greater
acceptance.

5. Sustainability
It has been proposed that tempeh may have a higher

protein delivery efficiency energy score compared to many
foods of animal origin and this represents an advantageous
environmental aspect [224]. The most burdensome compo-
nent on the environmental impact of tempeh appears to be
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land use and eutrophication derived from soy cultivation.
Tempeh exerts a reduction in greenhouse gas (GHG) pro-
duction compared to pork, beef, chicken, fish, eggs, and
milk, evaluated in grams of proteins per kg of CO2 eq.
based on life-cycle assessment (LCA) [225]. This implies
that to optimize the environmental impact of tempeh pro-
duction it would be useful to use autochthonous legumes
and grains that are adapted to a specific ecological niche.
Affordability is also part of the sustainability components
together with the impact on health and environment. Al-
though the costs of tempeh vary greatly based on produc-
tion factors, it has been highlighted that the price per kg of
tempeh is lower than the price of beef, with only traditional
products being cheaper than chicken, eggs, and milk [45].

Furthermore, transformation by fermentation can be
an optimal system for recovering by-products from other
food chains, which is the case for tempeh gembus since
it is obtained from the okara of tofu or soy milk produc-
tion. Tempeh gembus has shown beneficial effects on total,
low-density lipoprotein (LDL) and high-density lipopro-
tein (HDL) cholesterol fractions in women with hyper-
lipidaemia [226]. The effect could be mediated by the
high quantities of fibres and several in vitro studies have
suggested further beneficial properties of tempeh gembus
[227–230].

6. Conclusions and Future Remarks
Tempeh is an ancient Indonesian food, which despite

it being widely consumed in East Asian and in some West-
ern countries, data on its effects on humans remains lim-
ited. Furthermore, literature on this topic consists of a large
percentage of articles, which are not presented in the En-
glish language from countries where tempeh is tradition-
ally consumed. This aspect makes it difficult to dissemi-
nate such information. There is a need for randomized and
controlled clinical trials with an adequate design and size
that focus on the functional and nutraceutical effects of tem-
peh. Although tempeh studies mainly discuss isoflavones
bioavailability, available trials have often limited statisti-
cal power. Furthermore, considering the heterogeneity of
microorganisms used in its production, an adequate study
of the microbial consortium in multi-strain pools could im-
prove information regarding the functional properties of
tempeh. Instead, the single-strain fermentation step pro-
cess is widespread in the world and this could limit some
benefits.

Finally, tempeh is a highly appreciated food with a
high nutritional value and with a long history of use and
consequent safety; thus, its commercial diffusion could in-
crease, especially as a plant-based option to replace animal-
based foods. This can improve health and environmental
sustainability. Consistently, tempeh is an excellent can-
didate for the production of second-generation meat ana-
logues. Global availability of animal protein is limited and
does not allow adequate access to food for all populations.
For this reason, the diffusion of a vegetable protein source

such as tempeh would guarantee greater access to food and
a lower ecological impact compared to the currently over-
exploited animal sources.
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